
A New Stereoselective Synthesis of (E,Z)-Conjugated Hydroxy-Dienes, Key Intermediates for the Synthesis of HETES

Robert BLOCH,* Giovanna GASPARINI, and Christian GIRARD Laboratoire des Carbocycles (Associé au CNRS), Bât. 420, Institut de Chimie Moléculaire d'Orsay, Université de Paris-Sud, 91405 ORSAY, France

A general and highly stereoselective synthesis of (E,Z)-conjugated hydroxy-dienes is described and its synthetic utility is illustrated by the synthesis of precursors of (\pm)-LTA $_{\mu}$ methyl ester and (\pm)-5-HETE respectively.

Recently a new major pathway has been discovered for arachidonic acid metabolism which involves the conversion of this acid into the monohydroxyeicosatetranoic acids (HETES) by the action of lipoxygenases . $^{1)}$ These monohydroxylated metabolites possess important biological properties and have been the subject of active investigations. It has been pointed out that all the HETES have a common structural moiety \underline{l} involving a (E,Z)-conjugated diene and a hydroxy group adjacent to the E double bond.

Two general approaches to these hydroxy-dienes have been recently described: the stereoselectivity of the first approach 2) is not very high (EZ/ZZ = 75-80/25-20) and in the second one 3) the Z double bond is generated via a Wittig reaction, the stereoselectivity being not specified. We report in this note a highly stereo selective synthesis of hydroxy-dienes \underline{l} and its application to the synthesis of precursors of (\pm) -LTA $_{ll}$ and (\pm) -5-HETE.

The starting point of our synthesis (Scheme 1) is the lactone $\underline{2}$ easily available either in racemic $\underline{4}$ or in optically active form . $\underline{5}$

A one pot reduction (DIBAL, toluene, -78 °C) and Wittig-Horner olefination ((EtO)₂POCH₂CO₂Et, n-BuLi, -78 °C RT, 15 h) led to the pure trans ester $\underline{3}$ in 40-60% yield. After protection of the hydroxy group (dihydropyran, ether, p-TsOH, 75%) the ester $\underline{4}$ was reduced (DIBAL, toluene, -78 °C, 80%) and the resulting alcohol was oxidized (MnO₂, CH₂Cl₂, 4 h, RT, 95%) to give the aldehyde $\underline{5}$. Nucleophilic addition of Grignard reagents (RMgBr, ether, 0 °C) provided alcohols $\underline{6}$ (70-90%) as mixtures of two diastereoisomers in practically equal proportions. $\underline{7}$) After silylation (TBDPSCl, DMF,

1928 Chemistry Letters, 1988

imidazole, 80%) the Z double bond was generated by a smooth retro-Diels-Alder reaction (xylene, 140 °C, 3 h, 80-85%) to provide (E,Z)-dienes $\underline{8}$. Deprotection of the primary alcohol (PPTS, ethanol, 55 °C, 3 h, 60%) afforded the (E,Z)-conjugated dienes $\underline{9}$, stereoisomerically pure as shown by 1 H NMR . 8) The allylic alcohols $\underline{9}$ can be then converted to the corresponding bromides and coupled with cuprates of acetylenic compounds to give dienes of type $\underline{1}$. The viability of this sequence is illustrated by the synthesis of (2E,4Z,7Z)-tridecatrienyl tetrahydropyranyl ether ($\underline{15}$) and of methyl 10-hydroxy-5-(t-butyldiphenylsilyl)oxy-(6E,8Z)-decadienoate ($\underline{19}$), key intermediates for the synthesis of ($\underline{\pm}$)-LTA $_{h}$ methyl ester and ($\underline{\pm}$)-5-HETE respectively.

(2E,4Z,7Z)-tridecatrienyl tetrahydropyranyl ether $(\underline{15})$ ⁹⁾ was obtained from the bicyclic ester $\underline{3}$ (Scheme 2). After silylation of the primary alcohol (TBDPSCl, DMF, Imidazole, 93%) the ester group was reduced (DIBAL, toluene, 79%) and the created hydroxy group was protected (dihydropyran, pTsOH, 83%).

$$\frac{3}{10} \qquad \frac{11}{12} \text{ X=OTBDPS}$$

$$\frac{11}{12} \text{ X=OTBDPS}$$

$$\frac{11}{12} \text{ X=OTBDPS}$$

$$\frac{12}{12} \text{ X=OH} \qquad \frac{13}{13} \text{ X=Br}$$

$$\frac{CH_2OTHP}{C_5H_{11}} \qquad \frac{CH_2OTHP}{C_5H_{11}} \qquad \frac{(\pm)-LTA_4}{C_5H_{11}}$$

$$\frac{14}{14} \qquad \text{Scheme 2.} \qquad \frac{15}{15}$$

Chemistry Letters, 1988

The protected diol $\underline{10}$ was then thermolyzed (xylene, 140 °C, 1 h) to give the (E,Z) diene $\underline{11}$ (stereoisomeric purity> 95% as shown by 1 H NMR). Desilylation (nBu $_{\mu}$ NF, THF) and conversion to the bromide (CBr $_{\mu}$, (Φ_2 PCH $_2$) $_2$, CH $_2$ Cl $_2$) afforded the bromodiene $\underline{13}$ in 61% yield over the three steps. Coupling of $\underline{13}$ with an excess of the cuprate of 1-heptyne (5 equiv. 1-heptyne, 5 equiv. C $_2$ H $_5$ MgBr, 0.5 equiv. CuCl in THF; the freshly prepared bromide $\underline{13}$ was added at room temperature to this solution and the mixture was heated 1 h at 60 °C) gave $\underline{14}$ in 65-71% yield. Semi-hydrogenation $\underline{10}$ of $\underline{14}$ (H $_2$, Lindlar, hexane containing 2% quinoline by volume, 1.5 h, RT) provided the triene $\underline{15}$ in 78% yield . $\underline{11}$ The synthesis of ($\underline{\pm}$)-LTA $_{\mu}$ methyl ester via the phosphonate derived from $\underline{15}$ has been described by North . $\underline{9a}$

Methyl 10-hydroxy-5-(t-butyldiphenylsilyl)oxy-(6E,8Z)-decadienoate $(\underline{19})^{-12}$ was obtained following Scheme 3. Thermolysis of aldehyde $\underline{5}$ (xylene, 140 °C, 3 h) afforded the (E,Z)-diene $\underline{16}$ in 87% yield. Addition of the lithio OBO orthoester derived from 1-(3-bromopropyl)-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane 13) to the aldehyde $\underline{16}$ (1.2 equiv. of bromo orthoester, 2.4 equiv. t-BuLi -78 °C, 15 min, followed by addition of $\underline{16}$, -78 °C, 30 min) gave the dienol $\underline{17}$ in 36% yield . 14) Hydrolysis 15 of $\underline{17}$, (AcOH, THF, H₂O (4:2:1), 1.5 h, RT) followed by transesterification (K₂CO₃, MeOH) furnished the methyl ester $\underline{18}$ in 66% yield for the two steps.

5 CHO
OTHP
OTHP
OTHP

$$16$$
 17
 $(CH_2)_3^{CO_2Me}$
 $(CH_2)_3^{CO_2Me}$

Scheme 3.

Protection of the secondary hydroxy group (TBDPSC1, DMF, imidazole) and deprotection of the primary alcohol (PPTS, ethanol, 55 °C) led to the (E,Z)-diene $\underline{19}$ as a unique stereoisomer as shown by H^l NMR . 16) The synthesis of (±)-5-HETE by coupling of the bromide derived from $\underline{19}$ with the cuprate of 1,4-decadiyne followed by semi-hydrogenation and hydrolysis has been established by Rokach . 12)

1930 Chemistry Letters, 1988

References

1) See for example: "The Leukotrienes, Chemistry and Biology," ed by L.W. Chakrin and D.M. Bailey, Academic Press, London (1984).

- 2) J. Rokach and J. Adams, Acc. Chem. Res., <u>18</u>, 87 (1985) and references therein; Y. Leblanc, B.J. Fitzsimmons, J. Adams, F. Perez, and J. Rokach, J. Org. Chem., <u>51</u>, 789 (1986).
- 3) B.P. Gunn, Tetrahedron Lett., <u>26</u>, 2869 (1985); B.P. Gunn and D.W. Brooks, J. Org. Chem., <u>50</u>, 4418 (1985).
- 4) S. Tanako and K. Ogasawara, Synthesis, 1974, 42.
- 5) R. Bloch, E. Guibé-Jampel, and C. Girard, Tetrahedron Lett., 26, 4087 (1985).
- 6) A Wittig-Horner olefination of the isolated lactol led always to a mixture of ester $\underline{3}$ and of a tricyclic compound arising from an intramolecular Michael addition: see R. Bloch and M. Seck, Tetrahedron Lett., 28, 5819 (1987).
- 7) The transposition of this sequence to the synthesis of optically active $\underline{1}$ (starting from an enantiomer of $\underline{2}$) would demand a stereoselective addition of organometallic species to $\underline{7}$. Various solvents (ether, THF, HMPA), organometallics (RMgBr, RLi, RTi(OiPr)3) and hydroxyl protective groups (THP, TBDPS, MEM) have been tried but without any useful improvement of the selectivity: only small ratio changes from 50/50 to 60/40 have been observed by HPLC.
- 8) 1 H NMR (250 MHz, CDCl₃) for $\underline{9}$ (R = C₅H₁₁) : δ 7.3 7.7 (m, 10H), 6.1 (dd, J = 11.4, 16 Hz, 1H), 5.95 (dd, J = 11.4, 10.1 Hz, 1H), 5.6 (dd, J = 6, 16 Hz, 1H), 5.4 (dt, J = 10.1, 6.3 Hz, 1H), 4.15 (m, 1H), 4.1 (d, J = 6.3 Hz, 2H), 1.1 1.6 (m, 9H), 1.05 (s, 9H), 0.9 (t, J = 7 Hz, 3H).
- 9) For previous syntheses of (2E,4Z,7Z)-tridecatrienol see a) J.C. Buck, F. Ellis, and P.C. North, Tetrahedron Lett., 23, 4161 (1982); b) S. Tsuboi, T. Masuda, and A. Takeda, Chem. Lett., 1983, 1829.
- 10) Over reduction of the triene occurred to the extent of 5-20% depending on the run. The best catalyst found was the commercial Lindlar purchased from Fluka.
- 11) 1 H NMR (250 MHz, CDCl₃) for $_{15}$: δ 6.64 (dd, J = 11.2, 15.2 Hz, 1H), 6.08 (dd, J = 11.2, 11 Hz, 1H), 5.85 (dt, J = 15.2, 6.2 Hz, 1H), 5.45 (m, 3H), 4.75 (m, 1H), 4.35 (m, 1H), 4.10 (m, 1H), 3.95 (m, 1H), 3.58 (m, 1H), 3.0 (dd, J = 6.2, 6 Hz, 2H), 2.1 (m, 2H), 1.3 1.9 (m, 12H), 0.95 (t, J = 7 Hz, 3H).
- 12) Previous synthesis of $\underline{19}$: J. Rokach, J. Adams, and R. Perry, Tetrahedron Lett., $\underline{24}$, 5185 (1983).
- 13) E.J. Corey and N. Raju, Tetrahedron Lett., <u>24</u>, 5571 (1983).
- 14) Addition of the lithio OBO orthoester to the bicyclic aldehyde $\underline{5}$ could also be effected but with poor yields (15 to 20%).
- 15) P.Y. Kwok, F.W. Muellner, C.K. Chen, and J. Fried, J. Am. Chem. Soc., $\underline{109}$, 3684 (1987).
- 16) ¹H NMR (250 MHz, CDCl₃) for $\underline{19}:\delta$ 7.3 7.7 (m, 10H), 6.1 (dd, J = 11.3, 15 Hz, 1H), 5.95 (dd, J = 11.3, 11 Hz, 1H), 5.65 (dd, J = 15, 7 Hz, 1H), 5.5 (dt, J = 11, 7 Hz, 1H), 4.25 (m, 1H), 4.15 (d, J = 7 Hz, 2H), 3.6 (s, 3H), 2.2 (t, J = 7 Hz, 2H), 1.4 1.7 (m, 4H), 1.1 (s, 9H).

(Received August 11, 1988)